ON THE MOTION OF GYROSCOPIC DEVICES UNDER THE INFLUENCE OF RANDOM FORCES

(O DVIZRENII GIROSKOPICHESKIKH PRIBOROV POD VOZDEISTVIEM SLUCHAINYKH SIL)

```
PMM Vol.24, No.3, 1960, pp. 463-472
    Ia. N. ROITENBERG
            (Moscom)
(Received 29 February 1960)
```

The motion of gyroscopic devices under ship's rolling conditions was usually considered assuming the roll sinusoidal. The works of Sveshnikov [1] showed that the rolling motion of a ship can be considered a stationary random process, and obtained the correlation function and spectral density for this process. The motion of some ship devices under these conditions was studied by Rivkin [2].

The present paper considers the motion of a powered gyrostabilizer, plane gyropendulum and a gyrocompass subject to irregular ship rolling; determines the dispersion of a stabilization angle for the powered gyrostabilizer; and derives an expression for intercardinal deviation of the gyrocompass.

1. Powered gyrostabilizer in the presence of irregular ship rolling. The equations of motion for the powered gyrostabilizer subject to ship rolling are of the following form [3]:

$$
\begin{gather*}
A \alpha^{\prime \prime}-H \beta^{\prime}-K i_{2}=j(j-1) I \theta^{\prime \prime}-\zeta\left(\alpha^{\prime}-\theta^{\prime}\right) \tag{1.1}\\
B \beta^{\prime \prime}+H \alpha^{\prime}=0, l_{1} i_{1}^{\prime}+r_{1} i_{1}-s \beta=0, l_{2} i_{2}{ }^{\prime}+r_{2} i_{2}+c \alpha^{\prime}-x i_{1}=c \theta^{\prime}
\end{gather*}
$$

where

$$
\begin{equation*}
A=A_{1}+j^{2} I, \quad K=j k_{1} \Phi, \quad c=j k_{2} \Phi \tag{1.2}
\end{equation*}
$$

Here a is the angle rotation of the gyrostabilizer frame about its axis, β the angle of rotation of the gyroscope about the axis of its housing, θ the angle of rolling, A_{1} the moment of inertia of the gyrostabilizer frame together with the stabilizer object and the gyroscope about the axis of the frame, B the equatorial moment of inertia of the gyroscope, A the angular momentum of the gyroscope, i_{1} the current in
the amplifier circuit; l_{1} / r_{1} the time constant of this circuit, i_{2} the armature current of the unloading motor, l_{2} / r_{2} the time constant of the armature circuit, I the armature moment of inertia of the unloading motor, j the gear ratio of the transmission from the shaft of the unloading motor to the axis of the gyrostabilizer frame (the number of axes of the gear transmission is assumed to be odd), ζ the coefficient of viscous friction at the supports of the gyrostabilizer frame and Φ the magnetic flux created by the excitation coil of the unloading motor with independent excitation).

We shall limit oursel ves to the consideration of gyrostabilizers whose time constants l_{1} / r_{1} and l_{2} / r_{2} in the control circuits are so small that their influence can be neglected.

In this case one can let $l_{1}=l_{2}=0$ in the equations of motion (1.1) which then will assume the form

$$
\begin{equation*}
\alpha^{\prime \prime}+\frac{n}{A} \alpha^{\prime}-\frac{H}{A} \beta^{\prime}-\frac{m}{A} \beta=\frac{a}{A} \theta^{n}+\frac{n}{A} \theta^{\prime}, \beta^{\prime \prime}+\frac{H}{B} \alpha^{\prime}-0 \tag{1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
m=\frac{s x K}{r_{1} r_{2}}, \quad n=\zeta+\frac{K c}{r_{2}}, \quad a=j(j-1) I \tag{1.4}
\end{equation*}
$$

Let D be the operator for time differentiation ($D=d / d t$), and introducing matrices

$$
\begin{gather*}
f(D)=\left\|\begin{array}{cc}
D^{2}+\frac{n}{A} D & -\left(\frac{H}{A} D+\frac{m}{A}\right) \\
\frac{H}{B} \cdot D & D^{2}
\end{array}\right\|, \quad e(D)=\left\|\frac{a}{A} D^{2}+\frac{n}{A} D\right\| \\
0 \tag{1.5}
\end{gather*} \|
$$

we shall alter the system of equations (1.3) by the matrix equation

$$
\begin{equation*}
f(D) y=e(D) \theta(t) \tag{1.6}
\end{equation*}
$$

From Equation (1.6) it follows that

$$
\begin{equation*}
y=Y(D) \theta(t) \quad\left(Y(D)=\frac{F(D) e(D)}{\Delta(D)}\right) \tag{1.7}
\end{equation*}
$$

Here $F(D)$ is the adjoint matrix for $f(D)$

$$
F(D)=\left\|\begin{array}{cc}
D^{2} & \frac{H}{A} D+\frac{m}{A} \tag{1.8}\\
-\frac{H}{B} D & D^{2}+\frac{n}{A} D
\end{array}\right\|
$$

and $\Delta(D)$ is the determinant of matrix $f(D)$

$$
\begin{equation*}
\Delta(D)=D\left(D^{3}+\frac{n}{A} D^{2}+q^{2} D+\frac{m}{H} q^{2}\right) \quad\left(q^{2}=\frac{H^{2}}{A B}\right) \tag{1.9}
\end{equation*}
$$

Here q is the frequency of nutational oscillations of the gyrostabilizer.

Matrix $Y(D)$ is the matrix transfer function for the gyrostabilizer. In accordance with (1.7), (1.8) and (1.5) the matrix $Y(D)$ may be expressed in the following form:

$$
Y(D)=\frac{1}{\Delta(D)} \|-\left(\begin{array}{c}
\frac{a}{A} D^{4}+\frac{n}{A} D^{3} \tag{1.10}\\
-\left(\frac{H a}{A B} D^{3}+\frac{H n}{A B} D^{2}\right)
\end{array} \|\right.
$$

The angle a of the rotation of the gyrostabilizer frame and the angle β of the rotation of the gyroscope housing, according to (1.5), (1.7) and (1.10) shall be determined by the following operational expressions:

$$
\begin{align*}
& \alpha=Y_{11}(D) \theta(t)=\frac{1}{\Delta(D)}\left(\frac{a}{A} D^{4}+\frac{n}{A} D^{3}\right) \theta(t) \\
& \beta=Y_{21}(D) \theta(t)=-\frac{1}{\Delta(D)}\left(\frac{I I a}{A B} D^{3}+\frac{I I n}{A B} D^{2}\right) \theta(t) \tag{1.11}
\end{align*}
$$

As was shown in [1], the irregular rolling motion of a ship can be considered a stationary random process, the correlation function of which has the form

$$
\begin{equation*}
R_{1}(\tau)=L_{1} e^{-\mu|\tau|}\left(\cos \varepsilon \tau+\frac{\mu}{\varepsilon} \sin \varepsilon|\tau|\right) \tag{1.12}
\end{equation*}
$$

where L_{1} is the dispersion of the angle of roll and μ and ϵ are characteristic coefficients for a given ship. The corresponding spectral density for the correlation function (1.12) is

$$
\begin{equation*}
S_{1}(\omega)=L_{1} \frac{4 \mu \nu^{2}}{\left(\omega^{2}-v^{2}\right)^{2}+4 \mu^{2} \omega^{2}}, \quad \nu^{2}=\varepsilon^{2}+\mu^{2} \tag{1.13}
\end{equation*}
$$

Deviations of the gyrostabilizer caused by the rolling of the ship can be evaluated by the dispersion of the stabilization angle, i.e. by the dispersion a^{2} of the angle of rotation of the gyrostabilizer frame. According to (1.11) and (1.13)

$$
\begin{equation*}
\overline{\alpha^{2}}=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left|Y_{11}(i \omega)\right|^{2} S_{1}(\omega) d \omega \tag{1.14}
\end{equation*}
$$

where in accordance with (1.11) and (1.9)

$$
\begin{equation*}
\left|Y_{11}(i \omega)\right|^{2}=\frac{\left(\frac{a}{A}\right)^{2} \omega^{6}+\left(\frac{n}{A}\right)^{2} \omega^{4}}{\omega^{6}+\left[\left(\frac{n}{A}\right)^{2}-2 q^{2}\right] \omega^{4}+\left(q^{4}-2 \frac{m n}{H A} q^{2}\right) \omega^{2}+\left(\frac{m}{H}\right)^{2} q^{4}} \tag{1.15}
\end{equation*}
$$

Expression (1.14) may be transformed to

$$
\begin{equation*}
\overline{\alpha^{2}}=4 \mu \nu^{2} L_{1} I_{5}, \quad I_{5}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{g(i \omega)}{h(i \omega) h(-i \omega)} d \omega \tag{1.16}
\end{equation*}
$$

Here

$$
\begin{gather*}
g(i \omega)=b_{0}(i \omega)^{8}+b_{1}(i \omega)^{6}+b_{2}(i \omega)^{4}+b_{3}(i \omega)^{2}+b_{4} \tag{1.17}\\
h(i \omega)=a_{0}(i \omega)^{5}+a_{1}(i \omega)^{4}+a_{2}(i \omega)^{3}+a_{3}(i \omega)^{2}+a_{4}(i \omega)+a_{5}
\end{gather*}
$$

and the coefficients of the polynomials (1.17) will be

$$
\begin{gather*}
b_{0}=0, \quad b_{1}=-\left(\frac{a}{A}\right)^{2}, \quad b_{2}=\left(\frac{n}{A}\right)^{2}, \quad b_{3}=0, \quad b_{4}=0 \\
a_{0}=1, \quad a_{1}=2 \mu+\frac{n}{A}, \quad a_{2}=2 \mu \frac{n}{A}+q^{2}+\nu^{2} \\
a_{3}=\left(2 \mu+\frac{m}{H}\right) q^{2}+\frac{n}{A} \nu^{2}, \quad a_{4}=\left(2 \mu \frac{m}{H}+v^{2}\right) q^{2}, \quad a_{5}=\frac{m}{H} q^{2} v^{2} \tag{1.18}
\end{gather*}
$$

The integrals of the type (1.17) were evaluated by Phillips [4]. In the present case

$$
\begin{equation*}
I_{5}=\frac{M_{5}}{2 N_{5}} \tag{1.19}
\end{equation*}
$$

where

$$
\begin{gather*}
M_{5}=a_{0} b_{1}\left(a_{3} a_{4}-a_{2} a_{6}\right)+a_{0} b_{2}\left(a_{0} a_{5}-a_{1} a_{4}\right) \tag{1.20}\\
N_{5}=-\left|\begin{array}{cccc}
a_{1} & a_{0} & 0 & 0 \\
a_{3} & a_{2} & a_{1} & a_{0} \\
a_{5} & a_{4} & a_{3} & a_{2} \\
0 & 0 & a_{5} & a_{4}
\end{array}\right|=\left[a_{0}{ }^{2} a_{5}{ }^{2}-2 a_{0} a_{1} a_{4} a_{5}-a_{0} a_{2} a_{3} a_{5}+a_{0} a_{3}{ }^{2} a_{4}+\right. \tag{1.21}\\
\left.+a_{1}{ }^{2} a_{4}{ }^{2}+a_{1} a_{2}{ }^{2} a_{5}-a_{1} a_{2} a_{3} a_{4}\right]
\end{gather*}
$$

and the expression (1.16) for the dispersion of the stabilization angle will be of the form

$$
\begin{equation*}
\overline{\alpha^{2}}=\frac{2 \mu \nu^{2} L_{1} M_{5}}{N_{5}} \tag{1.22}
\end{equation*}
$$

As an example we will consider a gyrostabilizer with the following parameters:

$$
\begin{aligned}
& A=50 \mathrm{~kg} \mathrm{~m} \mathrm{sec}^{2}, B=0.04 \mathrm{kgm} \sec ^{2}, H=30 \mathrm{~kg} \mathrm{~m} \mathrm{sec} \\
& m=100 \mathrm{~kg} \mathrm{~m}, n=250 \mathrm{~kg} \mathrm{~m} \mathrm{sec}, a=5 \mathrm{kgm} \mathrm{sec}^{2}
\end{aligned}
$$

Furthermore, as follows from (1.9), the nutation frequency of the gyrostabilizer is $q=21.2 \mathrm{sec}^{-1}$; the nutation period is $T=2 \pi / q=$ 0.296 sec . The roll correlation function parameters are $\mu=0.1 \mathrm{sec}^{-1}$, $\nu=0.8 \mathrm{sec}^{-1}$.

Dispersion of the roll angle is $L_{1}=\theta^{2}=0.03$; the average mean square value of the ship roll angle is $\sqrt{ } L_{1}=0.173$, i. e. about 10°.

From this data we find the dispersion of the stabilization angle $a^{2}=$ 0.60510^{-6}, and the average mean-square values of the stabilization angle and of the gyroscope housing angle

$$
\sqrt{\overline{\alpha^{2}}}=0.777 .10^{-3} \approx 2.7^{\prime} \quad \sqrt{\overline{\beta^{2}}}=0.332 \approx 10^{\circ}
$$

2. Plane gyropendulum in the presence of irregular roll. The equations of motion for a plane gyropendulum subject to irregular roll are of the form

$$
\begin{align*}
& A \alpha^{\prime \prime}+H \beta^{\prime}+l P \alpha+M \beta=a \theta^{\prime \prime}-n\left(\alpha^{\prime}-\theta^{\prime}\right) \tag{2.1}\\
& B \beta^{\prime}+E \beta^{\prime}-H \alpha^{\prime}+\chi \beta=0, \quad a=\frac{l P}{\delta} r \tag{2.2}
\end{align*}
$$

Here a is the angle of rotation of the gyropendulum about its axis, β the angle of rotation of the gyroscope about the axis of its housing, θ the roll angle of the ship, A and B the corresponding moments of inertia, H the moment of momentum of the gyroscope, $l P$ the static moment of the pendulum, M the magnitude of the radial correcting moment, κ the stiffness of the spring connecting the gyroscope housing with the outer Cardan ring, E and n the coefficients of viscous friction and r the distance from the ship's center of roll to the axis of the gyropendulum suspension.

Limiting ourselves to the study of the precessional motion of the gyropendulum, we eliminate in the equations of motion (2.1) the inertia terms $A a^{\prime \prime}$ and $B \beta^{\prime}$. Then Equations (2.1) become

$$
\begin{gather*}
\beta^{\prime}+\frac{n}{H} \alpha^{\prime}+\frac{l P}{H} \alpha+\frac{M}{H} \beta=\frac{a}{H} \theta^{\prime \prime}+\frac{n}{H} \theta^{\prime} \\
-\alpha^{\prime}+\frac{E}{H} \beta^{\prime}+\frac{x}{H} \beta=0 \tag{2.3}
\end{gather*}
$$

Let D be the operator for time differentiation ($D=d / d t$) and introducing the matrices

$$
f(D)=\left\|\begin{array}{cc}
\frac{n}{H} D+\frac{l P}{H} & D+\frac{M}{H} \\
-D & \frac{E}{H} D+\frac{x}{H}
\end{array}\right\|, \quad y=\left\|\begin{array}{c}
\alpha \\
\beta
\end{array}\right\|, \quad e(D)=\left\|\frac{a}{H} D^{2}+\frac{n}{H} D\right\|
$$

we replace the system of equations (2.3) by the matrix equation

$$
\begin{equation*}
f(D) y=e(D) \theta(t) \tag{2.5}
\end{equation*}
$$

From Equation (2.5) it follows that

$$
\begin{equation*}
y=Y(D) \theta(t) \quad\left(Y(D)=\frac{F(D) e(D)}{\Delta(D)}\right) \tag{2.6}
\end{equation*}
$$

Here $F(D)$ is the adjoint matrix for $f(d)$

$$
F(D)=\left\|\begin{array}{cc}
\frac{E}{H} D+\frac{X}{H} & -\left(D+\frac{M}{H}\right) \tag{2.7}\\
D & \frac{n}{H} D+\frac{\Gamma I P}{H}
\end{array}\right\|
$$

and $\Delta(D)$ is the determinant of matrix $f(D)$

$$
\begin{equation*}
\Delta(D)=(1+\sigma) D^{2}+\zeta D+k^{2} \tag{2.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma=\frac{n E}{H^{2}}, \quad \zeta=\frac{x n+l P E}{H^{2}}+\frac{M}{H}, \quad k^{2}=\frac{x l P}{H^{2}} \tag{2.9}
\end{equation*}
$$

Matrix $Y(D)$ is the matrix transfer function for the system. In accordance with (2.6), (2.7) and (2.8) it may be expressed as

$$
Y(D)=\frac{1}{\Delta(D)}\left\|\begin{array}{c}
\frac{a E}{H^{2}} D^{3}+\left(\sigma+\frac{a x}{H^{2}}\right) D^{2}+\frac{\kappa n}{H^{2}} D \tag{2.10}\\
\frac{a}{H} D^{3}+\frac{n}{H} D^{3}
\end{array}\right\|
$$

The angle of rotation a of the gyropendulum and the angle of rotation β of the gyroscope housing will be determined, in agreement with (2.6) and (2.7), by the expressions

$$
\begin{gather*}
\alpha=Y_{11}(D) \theta(t)=\frac{1}{\Delta(D)}\left[\frac{a E}{H^{2}} D^{3}+\left(\sigma+\frac{a x}{H^{2}}\right) D^{2}+\frac{x n}{\bar{H}^{2}} D\right] \theta(t) \\
\beta=Y_{21}(D) \theta(t)=\frac{1}{\Delta(D)}\left(\frac{a}{H} D^{3}+\frac{n}{H} D^{2}\right) \theta(t) \tag{2.11}
\end{gather*}
$$

The dispersion \bar{a}^{2} of the angle of rotation of the gyroscopic pendulum and $\bar{\beta}^{2}$ of the angle of rotation of the gyroscope housing will be determined by the following expressions:

$$
\begin{equation*}
\overline{\alpha^{2}}=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left|Y_{11}(i \omega)\right|^{2} S_{1}(\omega) d \omega, \quad \bar{\beta}^{2}=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left|Y_{21}(i \omega)\right|^{2} S_{1}(\omega) d \omega \tag{2.12}
\end{equation*}
$$

Here

$$
\begin{gather*}
\left|Y_{11}(i \omega)\right|^{2}=\frac{1}{K}\left\{\left(\frac{a E}{H^{2}}\right)^{2} \omega^{6}+\left[\sigma^{2}+\left(\frac{a x}{H^{2}}\right)^{2}\right] \omega^{4}+\left(\frac{x n}{H^{2}}\right)^{2} \omega^{2}\right\} \\
\left|Y_{21}(i \omega)\right|^{2}=\frac{1}{K}\left[\left(\frac{a}{H}\right)^{2} \omega^{6}+\left(\frac{n}{H}\right)^{2} \omega^{4}\right] \tag{2.13}\\
K=(1+\sigma)^{2} \omega^{4}+\left[\zeta^{2}-2(1+\sigma) k^{2}\right] \omega^{2}+k^{4}
\end{gather*}
$$

In expressions (2.12), $S_{1}(\omega)$ denotes the spectral density of the roll angle θ, which according to (1.13) is of the form

$$
S_{1}(\omega)=L_{1} \frac{4 \mu v^{2}}{\left(\omega^{2}-\nu^{2}\right)^{2}+4 \mu^{2} \omega^{2}}
$$

The expressions (2.13) may be transformed into

$$
\begin{equation*}
\overline{\alpha^{2}}=4 \mu \nu^{2} L_{1} I_{4}, \quad \overline{\beta^{2}}=4 \mu \nu^{2} L_{1} J_{4} \tag{2.14}
\end{equation*}
$$

Here

$$
\begin{gather*}
I_{4}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{g(i \omega)}{h(i \omega) h(-i \omega)} d \omega, \quad J_{4}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{G(i \omega)}{h(i \omega) h(-i \omega)} d \omega \tag{2.15}\\
g(i \omega)=b_{0}(i \omega)^{6}+b_{1}(i \omega)^{4}+b_{2}(i \omega)^{2}+b_{3} \\
G(i \omega)=B_{0}(i \omega)^{6}+B_{1}(i \omega)^{4}+B_{2}(i \omega)^{2}+B_{3} \tag{2.16}\\
h(i \omega)=a_{0}(i \omega)^{4}+a_{1}(i \omega)^{3}+a_{2}(i \omega)^{2}+a_{3}(i \omega)+a_{4}
\end{gather*}
$$

The coefficients of polynomials (2.16) are

$$
\begin{array}{cl}
b_{0}=-\left(\frac{a E}{H^{2}}\right)^{2}, \quad b_{1}=\sigma^{2}+\left(\frac{a x}{H^{2}}\right)^{2}, & b_{2}=-\left(\frac{x n}{H^{2}}\right)^{2}, \quad b_{3}=0 \\
B_{0}=-\left(\frac{a}{H}\right)^{2}, \quad B_{1}=\left(\frac{n}{H}\right)^{2}, & B_{2}=0, \quad B_{3}=0 \tag{2.17}\\
a_{0}=1+\sigma, \quad a_{1}=2 \mu(1+\sigma)+\zeta, & a_{2}=2 \mu \zeta+k^{2}+v^{2}(1+\sigma) \\
a_{3}=2 \mu k^{2}+\zeta \nu^{2}, & a_{4}=k^{2} v^{2}
\end{array}
$$

In the case when all zeroes of the function $h(D)$ are located on the left half-plane of the complex variable D, the integrals (2.15), according to Phillips [4], are

$$
\begin{equation*}
I_{4}=\frac{M_{1}}{N}, \quad J_{4}=\frac{M_{2}}{N} \tag{2.18}
\end{equation*}
$$

Here

$$
\begin{gather*}
M_{1}=b_{0}\left(a_{1} a_{4}-a_{2} a_{3}\right)+a_{0} a_{3} b_{1}-a_{0} a_{1} b_{2}, M_{2}=B_{0}\left(a_{1} a_{4}-a_{2} a_{3}\right)+a_{0} a_{3} B_{1} \\
N=2 a_{0}\left(a_{1} a_{2} a_{3}-a_{0} a_{3}^{2}-a_{1}^{2} a_{4}\right) \tag{2.19}
\end{gather*}
$$

After substitution of a_{i}, b_{i} and B_{i}, according to (2.17) we have

$$
\begin{align*}
& M_{1}=\left(\frac{a E}{H^{2}}\right)^{2}\left[2 \mu k^{4}+4 \mu 2 \zeta k^{2}+2 \mu \zeta^{2} \nu^{2}+\zeta \nu^{4}(1+\sigma)\right]+ \tag{2.20}\\
& \quad+\left[\sigma^{2}+\left(\frac{a x}{H^{2}}\right)^{2}\right](1+\sigma)\left(2 \mu k^{2}+\zeta v^{2}\right)+\left(\frac{x n}{H^{2}}\right)^{2}(1+\sigma)[2 \mu(1+\sigma)+\zeta] \\
& M_{2}=\left(\frac{a}{H}\right)^{2}\left[2 \mu k^{4}+4 \mu \mu^{2} \zeta k^{2}+2 \mu \zeta^{2} v^{2}+\zeta \nu^{4}(1+\sigma)\right]+\left(\frac{n}{H}\right)^{2}\left(2 \mu k^{2}+\zeta \nu^{2}\right)(1+\sigma) \\
& N=4 \mu \zeta(1+\sigma)\left\{k^{4}+2\left[\left(2 \mu^{2}-\nu^{2}\right)(1+\sigma)+\mu \zeta\right] k^{2}+\right. \\
& \\
& \left.+\nu^{4}(1+\sigma)^{2}+2 \mu \zeta v^{2}(1+\sigma)+\zeta^{2} \nu^{2}\right\}
\end{align*}
$$

As an example we will consider a plane gyropendulum, the parameters of which are

$$
\frac{l P}{H}=\frac{x}{H}=0.02 \mathrm{sec}^{-1}, \quad \frac{M}{H}=0.01 \mathrm{sec}^{-1}, \quad E=n=0
$$

The distance from the center of the ship's roll to the support axis of the gyropendulum is $r=3 \mathrm{~m}$. Then according to (2.9)

$$
\frac{a}{H}=0.006 \mathrm{sec}, \quad \sigma=0, \quad \zeta=0,01 \mathrm{sec}^{-1}, \quad k=0.02 \mathrm{sec}^{-1}
$$

The period of the gyropendulum is $T=2 \pi / k=314 \mathrm{sec}$. The ship's roll correlation function parameters are

$$
\mu=0.1 \mathrm{sec}^{-1}, \nu=0.8 \mathrm{sec}^{-1}
$$

Dispersion of the ship's roll angle $L_{1}=\theta^{2}=0.03$; the average meansquare value $\sqrt{ } L_{1}=0.173$, i.e. about 10°.

According to (2.16) for the given data the dispersion of a and β will be as follows:

$$
\overline{a^{2}}=4.37 \cdot 10^{-10}, \quad \overline{\beta^{2}}=0.69 \cdot 10^{-6}
$$

The average mean-square value of the gyropendulum rotational angle a is

$$
\sqrt{\overline{\alpha^{2}}}=2.09 \cdot 10^{-5}
$$

i.e. about 4.3 seconds of arc. The average mean-square value of the gyroscope housing rotational angle β is

$$
\sqrt{\overline{\beta^{2}}}=0.83 \cdot 10^{-8}
$$

i.e. about 3 minutes of arc.

Thus, during ship's roll, oscillations with considerable amplitudes occur about the axis of the gyroscope housing. The amplitude of
oscillations about the gyropendulum support axis is small, since the average mean-square value of the angle a is extremely small.

This result confirms the advantage of a twin gyroscopic vertical, containing two plane gyropendulums as compared with a single-rotor gyropendulum under the conditions of ship's roll.
3. Intercardinal deviation of a gyrocompass. The equations of motion for a double-rotor gyrocompass in the presence of ship's roll can be expressed in the following form:

$$
\begin{gather*}
A_{1} \alpha^{\prime \prime}+H \beta^{\prime}+H U \cos \varphi \alpha=H \frac{v_{N}}{R}+\frac{l P}{g} W_{2 \gamma} \\
A_{2} \beta^{\prime \prime}-H \alpha^{\prime}+l P \beta+l P(1-\rho) \vartheta=H U \sin \varphi-\frac{l P}{g} W_{2} \\
\vartheta^{\prime}+F \vartheta+F \beta=-F \frac{W_{2}}{g}, A_{3} \gamma^{\prime \prime}+K \delta^{\prime}+l P_{\gamma}=\frac{l P}{g} W_{1} \tag{3.1}\\
A_{4} \delta^{\prime \prime}+m \delta^{\prime}-K \gamma^{\prime}+x \delta=K U \cos \varphi
\end{gather*}
$$

where

$$
\begin{equation*}
H=2 B \cos \varepsilon, \quad K=2 B \sin \varepsilon \tag{3.2}
\end{equation*}
$$

Here a is the gyrocompass rotational angle in azimuth, β and y the angles of elevation, respectively, for the North and West gyrosphere diameters above the horizontal plane, δ the angle of precession for the gyroscopes with respect to the gyrosphere, $\boldsymbol{\vartheta}$ the inclination of the fluid level in the hydraulic damper with respect to the equatorial plane of the gyrosphere, $A_{1}, A_{2}, A_{3}, A_{4}$, the corresponding moments of inertia, B the eigen moment of each gyroscope, 2ϵ the angle between the rotor axes of the gyroscopes, $l P$ the static moment of the gyrosphere, κ the stiffness of the spring connecting the gyro housing with the gyrosphere, U the angular velocity of the Earth's diurnal rotation, ϕ the latitude of observation; v_{N} the Northern component of ship's velocity, W_{1} and W_{2} the Eastern and Western components of translational acceleration for the gyro suspension point and R is the radius of the Earth.

For the case of rectilinear uniform motion of the ship in the presence of roll we may set

$$
\begin{equation*}
W_{1} \approx-r 0^{\prime \prime} \cos \psi, \quad W_{2} \approx r 0^{\prime \prime} \sin \psi \tag{3.3}
\end{equation*}
$$

where θ is the roll angle, ψ the ship's course and r distance from the support point of the gyroscope to the straight line passing through the center of the ship's roll and directed parallel to the longitudinal axis of the ship.

Studying only the precessional motion of the gyrocompass we eliminate in the equations of motion (3.1) the inertia terms $A_{1} a^{\prime \prime}, A_{2} \beta^{\prime \prime}, A_{3} y^{\prime \prime}$ and $A_{4} \delta^{\prime \prime}$. Then Equations (3.1) become

$$
\begin{gather*}
\beta^{\prime}+U \cos \varphi\left(\alpha-\alpha^{*}\right)=\frac{k^{2}}{U \cos \varphi} \frac{r \sin \psi}{g} \theta^{\prime \prime} \gamma \\
\alpha^{\prime}-\frac{k^{2}}{U \cos \varphi}\left(\beta-\beta^{*}\right)-\frac{k^{2}(1-\rho)}{U \cos \varphi}\left(\vartheta-\vartheta^{*}\right)=-\frac{k^{2}}{U \cos \varphi} \frac{r \sin \psi}{g} \theta^{\prime \prime} \\
\vartheta^{\prime}+F\left(\vartheta-\vartheta^{*}\right)+F\left(\beta-\beta^{*}\right)=-F \frac{r \sin \psi}{g} \theta^{\prime \prime} \tag{3.4}\\
\gamma^{\prime \prime}+\zeta \gamma^{\prime}+n^{2} \gamma=-\frac{r \cos \psi}{g}\left(\zeta \theta^{\prime \prime \prime}+n^{2} \theta^{\prime \prime}\right)
\end{gather*}
$$

where

$$
\begin{gather*}
k^{2}=\frac{l P U \cos \varphi}{H}, \quad n^{2}=\frac{x l P}{K^{2}}, \quad \zeta=\frac{m}{x} n^{2} \tag{3.5}\\
\alpha^{*}=\frac{v_{N}}{R U \cos \varphi}, \quad \beta^{*}=\frac{H U \sin \varphi}{\rho l P}, \quad \vartheta^{*}=-\frac{H U \sin \varphi}{\rho l P} \tag{3.6}
\end{gather*}
$$

Assuming, in accordance with (1.12), that θ is a stationary random process we will define, for the generalized coordinates of the gyrocompass, their mathematical expectancies, which we denote as

$$
\begin{equation*}
x_{1}=M\left[\alpha-\alpha^{*}\right], \quad x_{2}=M\left[\beta-\beta^{*}\right], \quad x_{3}=M\left[\vartheta-\vartheta^{*}\right] \tag{3.7}
\end{equation*}
$$

The value of these quantities for $t \rightarrow \infty$ we denote by $x_{1}{ }^{*}$.
For the coordinate γ, as can be seen from the last equation of (3.4), the steady value of the mathematical expectancy is

$$
\begin{equation*}
x_{4}^{*}=0 \tag{3.8}
\end{equation*}
$$

The quantities x_{1}, x_{2}, x_{3} satisfy the following equations:

$$
\begin{gather*}
x_{2}{ }^{\prime}+U \cos \varphi x_{1}=E \\
x_{1}^{\prime}-\frac{k^{2}}{U \cos \varphi} x_{2}-\frac{k^{2}(1-p)}{U \cos \varphi} x_{3}=0, \quad x_{3}{ }^{\prime}+F x_{2}+F x_{3}=0 \tag{3.9}
\end{gather*}
$$

where

$$
\begin{equation*}
E=\frac{k^{2}}{U \cos \varphi} \frac{r \sin \psi}{g} R_{c}(0) \tag{3.10}
\end{equation*}
$$

and $R_{c}(r)$ denotes the cross-correlation function for the random processes $\theta^{\prime \prime}$ and γ.

The quantity $R_{c}(0)$ may be computed as follows. The spectral density S_{1} for the roll angle θ and the spectral density S_{2} for the random process $\theta^{\prime \prime}$ are, according to (1.13)

$$
\begin{equation*}
S_{1}(\omega)=\frac{4 \mu \nu^{2} L_{1}}{\left(\omega^{2}-\nu^{2}\right)^{2}+4 \mu^{2} \omega^{2}}, \quad S_{2}(\omega)=\frac{4 \mu \nu^{2} L_{1} \omega^{4}}{\left(\omega^{2}-\nu^{2}\right)^{2}+4 \mu^{2} \omega^{2}} \tag{3.11}
\end{equation*}
$$

And since according to the fourth equation of (3.4)

$$
\begin{equation*}
\Upsilon=-\frac{r \cos \psi}{g} \frac{\zeta D+n^{2}}{D^{2}+\zeta D+n^{2}} \theta^{\prime \prime} \quad\left(D=\frac{d}{d t}\right) \tag{3.12}
\end{equation*}
$$

the cross-spectral density $S_{c}(\omega)$ for the random processes $\theta^{\prime \prime}$ and γ may be expressed in the form

$$
\begin{equation*}
S_{c}(\omega)=-4 \mu \nu^{2} L_{1} \frac{r \cos \psi}{g} \frac{\left(i \zeta \omega+n^{2}\right) \omega^{4}}{\left(-\omega^{2}+i \zeta \omega+n^{2}\right)\left\lceil\left(\omega^{2}-v^{3}\right)^{2}+4 \mu^{2} \omega^{2}\right]} \tag{3.13}
\end{equation*}
$$

Noting that

$$
\begin{equation*}
R_{\mathrm{c}}(\tau)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{\mathrm{c}}(\omega) e^{i \omega \tau} d \omega \tag{3.14}
\end{equation*}
$$

one can transform the expression (3.10) into

$$
\begin{equation*}
E=-2 \mu \nu^{2} L_{1} \frac{k^{2}}{U \cos \varphi} \frac{r^{2} \sin 2 \psi}{g^{2}} I \tag{3.15}
\end{equation*}
$$

where

$$
\begin{equation*}
I=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{-\left(n^{3}-\zeta^{2}\right) \omega^{6}+n^{4} \omega^{4}-i \zeta \omega^{7}}{\left[\left(\omega^{2}-n^{2}\right)^{2}+\zeta^{\zeta^{2}} \omega^{2}\right]\left[\left(\omega^{2}-\nu^{2}\right)^{2}+4 \mu^{2} \omega^{2}\right]} d \omega \tag{3.16}
\end{equation*}
$$

Since the subintegral function is odd

$$
\int_{-\infty}^{\infty} \frac{\omega^{2}}{\left\lceil\left(\omega^{2}-n^{2}\right)^{2}+\zeta^{2} \omega^{2}\right\rfloor\left[\left(\omega^{2}-\nu^{2}\right)^{2}+4 \mu^{2} \omega^{2}\right]} d \omega=0
$$

Therefore, the expression (3.16) becomes

$$
\begin{equation*}
I=I_{4}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{g(i \omega)}{h(i \omega) h(-i \omega)} d \omega \tag{3.17}
\end{equation*}
$$

Here

$$
\begin{gather*}
g(i \omega)=b_{0}(i \omega)^{6}+b_{1}(i \omega)^{4}+b_{2}(i \omega)^{2}+b_{3} \tag{3.18}\\
h(i \omega)=a_{0}(i \omega)^{4}+a_{1}(i \omega)^{3}+a_{2}(i \omega)^{2}+a_{3}(i \omega)+a_{4}
\end{gather*}
$$

$$
\begin{gathered}
b_{0}=n^{2}-\zeta^{2}, \quad b_{1}=n^{4}, \quad b_{2}=0, \quad b_{3}=0 \\
a_{0}=1, \quad a_{1}=2 \mu+\zeta, \quad a_{2}=2 \mu \zeta+n^{2}+\nu^{2}, \quad a_{3}=2 \mu n^{2}+\zeta \nu^{2}, \quad a_{4}=\nu^{2} n^{2}
\end{gathered}
$$

For the integral (3.17), according to Phillips [4], we will have

$$
\begin{equation*}
I_{4}=\frac{b_{0}\left(-a_{1} a_{4}+a_{2} a_{3}\right)-a_{0} a_{3} b_{1}}{2 a_{0}\left(a_{0} a_{3}{ }^{2}+a_{1}{ }^{2} a_{4}-a_{1} a_{2} a_{3}\right)} \tag{3.20}
\end{equation*}
$$

Upon substitution of a_{i} and b_{i} from (3.19) this expression becomes

$$
\begin{equation*}
I_{4}=\frac{\left(\nu^{2}+2 \mu \zeta-4 \mu^{2}\right) n^{4}-\left(\nu^{4}+2 \mu \zeta \nu^{2}-4 \mu \zeta^{2}\right) n^{2}+\left(\nu^{2}+2 \mu \zeta\right) \zeta^{2} \nu^{2}}{4 \mu\left[n^{1}+2\left(2 \mu^{2}+\mu \zeta-\nu^{2}\right) n^{2}+\nu^{2}\left(\nu^{2}+2 \mu \zeta+\zeta^{2}\right)\right]} \tag{3.21}
\end{equation*}
$$

The system of homogeneous differential equations resulting from (3.9) for $E=0$ has the characteristic equation

$$
\begin{equation*}
D^{3}+F D^{2}+k^{2} D+\rho k^{2} F=0 \tag{3.22}
\end{equation*}
$$

For $\rho<1$, which is always true in gyrocompasses, all roots of the characteristic equation (3.22) will lie on the left half-plane of the complex variable D and the integrals of the above-mentioned system of homogeneous equations will asymptotically tend to zero for $t \rightarrow \infty$. Therefore, during ship's roll, a process of sufficiently long duration, the quantities x_{1}, x_{2}, x_{3} will attain their steady-state values which in agreement with (3.9) will be as follows:

$$
\begin{equation*}
x_{1}^{*}=\frac{E}{U \cos \varphi}, \quad x_{2}^{*}=0, \quad x_{3}^{*}=0 \tag{3.23}
\end{equation*}
$$

In accordance with (3.15), the expression for $x_{1}{ }^{*}$ becomes

$$
\begin{equation*}
x_{1}^{*}=a I_{4} \sin 2 \psi \quad\left(a=-2 \mu v^{2} L_{1}\left(\frac{k}{U \cos \varphi}\right)^{2} \frac{r}{}_{g^{2}}^{2}\right) \tag{3.24}
\end{equation*}
$$

where I_{4} is defined above by the expression (3.21).
The quantity $x_{1}{ }^{*}$ is the intercardinal deviation of the gyrocompass. It vanishes for cardinal courses of the $\operatorname{ship}\left(\psi=0^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ}\right.$) and attains its largest values for intercardinal courses ($\psi=45^{\circ}, 135^{\circ}, 225^{\circ}$, 315°).

As an example we will determine the intercardinal deviation for a gyrocompass with $k=1.24 \times 10^{-3} \mathrm{sec}^{-1}$ which corresponds to the natural period in azimuth $T_{k}=84.4 \mathrm{~min}$. The latitude ϕ of the point of observation is assumed equal to 60°, so that $U \cos \phi=3.646 \times 10^{-5} \mathrm{sec}^{-1}$. The distance from the gyrocompass support point to the straight line passing through the ship's center of roll is $r=2 \mathrm{~m}$. The roll correlation function
parameters are $\mu=0.1 \mathrm{sec}^{-1}, \nu=0.8 \mathrm{sec}^{-1}$. The dispersion of the roll angle is $L_{1}=0.03$, to wich corresponds the average mean-square value of the roll angle

$$
\sqrt{L_{1}}=0.173
$$

i.e. about 10°.

The intercardinal deviation of the gyrocompass, in agreement with (3.24), is then determined by the expression

$$
x_{1}^{*}=-0.186 I_{4} \sin 2 \psi
$$

where I_{4}, in agreement with (3.21), depends upon the natural frequency n of the gyrocompass in γ-direction. The values of the function $I_{4}\left(T_{n}\right)$, where $T_{n}=2 \pi / n$, are given in the table.

TABLE

$\begin{gathered} T_{n}, \\ c e k \end{gathered}$	$I_{4}(\zeta=0)$	$I_{4}(\zeta=0.2 n)$	T_{n}, cex	$H_{4}(\zeta=0)$	$I_{6}(\boldsymbol{\zeta}=0.2 n)$
0.2	1.501	4.642	8.7	-3.613	-1.509
0.5	1.505	2.762	8.8	-3.540	-1.371
1.0	1.521	2.149	8.9	-3.445	-1.419
2.0	1.589	1.899	9.0	-3.337	-1.455
3.0	1.715	1.905	9.5	-2.749	-1.500
4.0	1.921	2.015	10	-2.245	-1.420
5.0	2.247	2.178	11	-1.565	-1.170
6.0	2.698	2,455	12	-1.160	-0.944
6.6	2.837	1.953	15	-0.599	-0.537
7.0	2.491	1.498	20	-0.291	-0.272
7.1	2.278	1.344	30	-0.118	-0.112
7.2	1.992	1.174	40	-0.064	-0.061
7.3	1.624	0.990	50	-0.040	-0.039
7.4	1.169	0.795	100	$-0.994 \cdot 10^{-2}$	$-0.953 \cdot 10^{-2}$
7.5	0.633	0.591	200	$-0.272 \cdot 10^{-2}$	$-0.238 \cdot 10^{-2}$
7.6	0.029	0.382	300	$-0.110 \cdot 10^{-2}$	-0.105.10-2
7.7	-0.615	0.178	400	-0.617.10-8	$-0.592 \cdot 10^{-8}$
7.8	-1.263	-0.033	500	$-0.395 \cdot 10^{-3}$	$-0.379 \cdot 10^{-8}$
7.9	-1.875	-0.233	600	$-0.274 \cdot 10^{-3}$	$-0.263 \cdot 10^{-8}$
8.0	-2.416	-0.422	700	$-0.201 \cdot 10^{-3}$	$-0.193 \cdot 10^{-8}$
8.1	-2.860	-0.599	800	$-0.154 \cdot 10^{-3}$	$-0.148 \cdot 10^{-3}$
8.2	-3.202	-0.759	900	$-0.122 \cdot 10^{-3}$	$-0.117 \cdot 10^{-3}$
8.3	- 3.438	0.904	1000	$--0.987 \cdot 10^{-4}$	- $0.948 \cdot 10^{-4}$
8.4	-3.582	-1.031	1100	$-0.816 \cdot 10^{-4}$	$-0.783 \cdot 10^{-}$
8.5	-3.648	-1.140	1200	$-0.685 \cdot 10^{-4}$	$-0.658 \cdot 10^{4}$
8.6	-3.653	-1.233			

As can be seen from the table, the intercardinal deviation is sufficiently small for gyrocompasses with the period T_{n} in γ direction comparatively large, of the order of $15-20 \mathrm{~min}$, as is the case for doublerotor gyrocompasses. Thus, in the given example, for the case when
$T_{n}=20 \mathrm{~min}$, and $\sin 2 \psi=1$, the intercardinal deviation consists of only 0.04 minutes of arc.

The intercardinal deviation is also small in the neighborhood of the zero of the function $I_{4}(n)$, located near the point $n=\nu$. Thus, for $\zeta=0$, the function I_{4} becomes zero for

$$
n=\nu / \sqrt{1-4 \mu^{2} / \nu^{2}}
$$

The relationship among the parameters for which the condition $n \approx \nu$ is satisfied occurs in gyrocompasses with mercury ballistic vessels [5].

BIBL IOGRAPHY

1. Sveshnikov, A.A., 0 teorii bortovoi kachki korablia na nereguliarnom volnenii (On the theory of ship roll under irregular excitation). Tr. 1st Mezhvuzovskoi konferents. po giroskopii, 1956.
2. Rivkin, S.S., Ob otsenke pogreshnostei giroskopicheskikh priborov pri vozdeistrii na nikh sluchainykh vozmushchenii (on the error evaluation of gyrosconic devices subject to random excitations). Sb. dokl. Nauchno-techn. ob-va priborostroit. promyshlenosti, Sudpromgiz, 1958.
3. Roitenberg, Ia.N., Vynuzhdennye kolebaniia silovykh giroskopicheskikh stabilizatorov (Forced oscillations of powered gyroscopic stabilizers). Priborostroenie No. 1, 1946.
4. James, Nichols and Phillips, Teoria slediashchikh sistem (Theory of Servomechanisms). Izd. inostr. lit., 1951.
5. Rawlings, A.L., The Theory of the Gyroscopic Compass and its deviations, London, 1929.
