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The motion of gyroscopic devices under ship’s rolling conditions was 

usually considered assuming the roll sinusoidal. The works of Sveshnikov 
[l 1 showed that the rolling motion of a ship can be considered a station- 

ary random process, and obtained the correlation function and spectral 

density for this process. The motion of some ship devices under these 

conditions was studied by Rivkin [2 1. 

The present paper considers the motion of a powered gyrostabilizer. 

plane gyropendulum and a gyrocompass subject to irregular ship rolling; 
determines the dispersion of a stabilization angle for the powered gyro- 
stabilizer; and derives an expression for intercardinal deviation of the 
gyrocompass. 

1. Powered gyrostabilizer in the presence of irregular ship 
rolling. 'Ihe equations of motion for the powered gyrostabilizer subject 

to ship rolling are of the following form [ 3 ] : 

Aa” - HP' - Ki, = j (j - 1) IO” - t: (a’ - 0’) (1 .I) 

B/3” + Ha’ .= 0, Z,il’ + r,i, - sp = 0, I&’ + r,i, + ca’ - xi1 = CO’ 

where 

A = A, + izr, K = jk,CD, c = jk,@ (1.2) 

Here a is the angle rotation of the gyrostabilizer frame about its 

axis, p the angle of rotation of the gyroscope about the axis of its 

housing, 8 the angle of rolling, A, the moment of inertia of the gyro- 

stabilizer frame together with the stabilizer object and the gyroscope 

about the axis of the frame, B the equatorial moment of inertia of the 

gyroscope, A the angular momentum of the gyroscope, i, the current in 
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the mrplifier circuit; II/r1 the time constant of this circuit, i, the 

armature current of the unloading motor, Z2/r2 the time constant of the 

armature circuit, I the armature moment of inertia of the unloading 

motor, J' the gear ratio of the transmission from the shaft of the un- 

loading motor to the axis of the gyrostabilizer frame (the number of 

axes of the gear transmission is assumed to be odd), 4 the coefficient 

of viscous friction at the supports of the gyrostabilizer frame and @ 

the magnetic flux created by the excitation coil of the unloading motor 

with independent excitation). 

We shall limit ourselves to the consideration of gyrostabilizers whose 

time constants El/r1 and Z2/r2 in the control circuits are so small that 

their influence can be neglected. 

In this case one can let 1, = I, = 0 in the equations of motion (1.1) 

which then will assune the form 

~“+~~‘_~a~-~a=~e~+~~, pff+p=o (1.3) 
where 

WK 
m=rlra’ n=t;+$, a=i(i-1)I (1.4) 

Let D be the operator for time differentiation (D = d/dt), and intro- 

ducing matrices 

D=++D - ( +D+% 

f(D)= 
) 

SD 02 

Y= ; II n 
I f e(D) = a +D=++D 

0 I 
(I.51 

we shall alter the system of equations (1.3) by the matrix equation 

(1.6) 

From Equation (1.6) it follows that 

Y = YP)~(t) 
( '@)= 

F (D) e (D) 
A(D) ) (1.7) 

Here F(D) is the adjoint matrix for f(D) 

D= 

F(D)= H D 

+D+ T 

-7 D”++D 
(1.8) 
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and A(D) is the determinant of matrix f(D) 

A(D)=D(D3++D2+q2D++ q”) (qa = g,j (1.9) 

Here q is the frequency of nutational oscillations of the gyrostabil- 

i zer. 

Matrix Y(D) is the matrix transfer function for the gyrostabilizer. 

In accordance with (1.7), (1.8) and (1.5) the matrix Y(D) may be ex- 
pressed in the following form: 

Y(D) =L 
-p”++D” 

A(D) - ~~3+$93 

( 1 

(1 .lO) 

The angle a of the rotation of the gyrostabilizer frame and the angle 

@ of the rotation of the gyroscope housing, according to (1.5)) (1.7) 
and (1.10) shall be determined by the following operational expressions: 

a=Y,,(D)B(t)-&&D’+ %D3)0(t) 

P=YZ1(D)O(t)=-~(~~D3+~D2)e(t) (1.11) 

As was shown in [ 1 1, the irregular rolling motion of a ship can be 
considered a stationary random process, the correlation function of which 
has the form 

H, (T) = L,e++l (,os EK + $ sin E ) T] j (1.12) 

where L, is the dispersion of the angle of roll and p and t are character- 
istic coefficients for a given ship. ‘lhe corresponding spectral density 
for the correlation function (1.12) is 

(I#--v2)2 + 4pW ' 
V2 = E2+ 1" (1.13) 

Deviations of the gyrostabilizer caused by the rolling of the ship can 
be evaluated by the dispersion of the stabilization angle, i.e. by the 
disp ersion o2 of the angle of rotation of the gyrostabilizer frame. 

According to (1.11) and ( 1.13) 

2 = & 1 1 Y,, (i(O) I2 L!?I ((0) d6) (1.14) 

-cu 

where in accordance with (1.11) and (1.9) 
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1 Y,, (iw) I* = - 
(_gb+ (+4 

&+[(%y-2+4+ (9’-2!?&~)0”+($+ (*‘15) 

Expression (1.14) may be transformed to 

co 

2 = 4p2L,Ib, 16=&i g Go) 
h (io) h (- iw) ‘” (1.16) 

--a, 

Here 

g (io) = b, (io)B + bl (io)4 + bz (io)” + b, (i6J)2 + b, (1.17) 

h (io) = a, (iw)6 + a, (iw)4 + a2 (io)” + ff3 (iw)a + a4 (h) + a5 

and the coefficients of the polynomials (1.17) will be 

b. = 0, b,=- +“, 
( > 

bz=(+y, bs=O, bp=O 

‘Ihe integrals of the type (1.17) were evaluated by Phillips i. 4 1. In 
the present case 

(1.19) 

where 

M, = uobl (a3a4 - %ad + aobz (uoa5 - ala41 (1.20) 

RI (to 0 0 

N& = - 1: ;I 1: ;; 
= [a,%@ - 2uou~a4a~ - aOa2a3~6 f %i"32ud + 

+ a12a42 f w22a6 -w%a8a41 
(1.21j 

0 0 ll6 n4 

and the expression (1.16) for the dispersion of the stabilization angle 
will be of the form 

;;1 = 2WGM5 
N6 

(l.22) 

As an example we will consider a gyrostabilizer with the following 
parameters: 
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A = 50 kg m se& B = 0.04 kg m set’, H = 30 kg m set 

a = 100 kg m. II = 250 kg P sec. a = 5 kg m sec2 

Furthermore, as follows from (1.9). the nutation frequency of the 

gyrostabilizer is q = 21.2 set-‘; the nutation period is T = 2n /q = 

0.296 sec. The roll correlation function parameters are /A = 0.1 set-‘. 
-1 Y = 0.8 set . 

Dispersion of the roll angle is L, = e2 = 0.03; the average mean 

square value 

From this 
0.60 fi lo-+, 

angle and of 

of the ship roll angle is I./ L, = 0.173. i.e. about l@. 

data we find the dispersion of the stabilization angle s2 = 
and the average mean-square values of the stabilization 
the gyroscope housing angle 

)fz = 0.777.10-s ~2.7’ V-F = 0.332 z 19” 

2. Plane gyropendulum in the presence of irregular roll. 
The equations of motion for a plane gyropendulum subject to irregular 
roll are of the form 

(2.1) 

(2.2) 

Here a is the angle of rotation of the gyropendulum about its axis, 

p the angle of rotation of the gyroscope about the axis of its housing, 

8 the roll angle of the ship, A and B the corresponding moments of 

inertia, H the moment of momentum of the gyroscope, ZP the static moment 
of the pendulum, M the magnitude of the radial correcting moment, K the 

stiffness of the spring connecting the gyroscope housing with the outer 

Cardan ring, E and n the coefficients of viscous friction and r the dis- 

tance from the ship’s center of roll to the axis of the ~rop~dul~ 

suspension. 

Limiting ourselves to the study of the precessional motion of the 

gyropendulum, we eliminate in the equations of motion (2.1) the inertia 

terms Aa w and BP’. lhen Equations (2.1) become 

(2.3) 

bet D be the operator for time differentiation (I) = d/dt) and intro- 
ducing the matrices 
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(2.4) 
D-t+ +-Da++ D 

+D++’ 
e(o) = 

0 

we rep,lace the system of equations (2.3) by the matrix equation 

f(~)~=e(WW) 

From Equation (2.5) it follows that 

?I = =mfJw P(D) e (D) 
c=@)= A(D) > 

Here F(D) is the adjoint matrix for f(d) 

-&D+$- 

F(D)= D 

- D++ 
( 

+D+r$ 

and A(D) is the determinant of matrix f(D) 

A(D)=(l+a)D"+CD$-ka 

where 

nE 
Q = Ha, C= k2= xg 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

Matrix Y(D) is the matrix transfer function for the system. In accord- 

ance with (2.6), (2.7) and (2.8) it may be expressed as 

W)=& 

gDsf(o+g)D’+ +$ D 

+D”++ Da 
(2.10) 

'lhe angle of rotation a of the gyropendulm 

p of the gyroscope housing will be determined, 

and (2.7), by the expressions 

and the angle of rotation 

in agreement with (2.6) 

a = =I, (Q 0 (0 = & [$- D~+(o+$p+~D]e(t) 

p=y2,(~)e(t)=-&(+p+ +2)e(t) (2.11) 

'Ihe dispersion Q -' of the angle of rotation of the gyroscopic pendulum 

anajP of the angle of rotation of the gyroscope housing will be deter- 

mined by the following expressions: 

2 = & T IY,,(i~)[~&(o)do, 7" = & s ]Y,,(i~)(~&(w) do 
---co -m 

Here 

(2.12) 
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1 Y,, (io) I” = + /(+)’ 06 + (gy 09 ] 

K = (1 + a)2 04 + [r;2 -2(1 + u)k2]02+ k’ 

(2.13) 

In expressions (2.12), Sl(o) denotes the spectral density of the roll 
angle 8, which according to (1.13) is of the form 

Sl(4 = Ll 
4p' 

(d - v’)* + 4 gw 

The expressions (2.13) may be transformed into 

aa = 4@L,I,, p = 4pv2L,J, (2.14) 

Here 
Ccl 00 

Id=& \ 
g W d” 

’ J, = 2& \ 
c (io) 

h (io) h (- io) h(io)h(Liw) dw t2.15) 
--a0 --QD 

g (io) = b,, (ie$’ + bl (i@ + bz (io)” + b, 

G (io) = B. (iw)” + B1 (io)” + B2 (im)” + Bs 

h (io) = a,, (io)* + a, (io)” + a2 (io)” + a3 (io) -I- a, 
(2.16) 

‘lhe coefficients of polynomials (2.16) are 

b,=-($& bl=cP+r&)a, b2=-(Ey, b3=0 

Bo=- + ‘, 
( > 

B1=(+)*, B2=0, B, = 0 (2.17) 

a0 = 1 + u, u, = 2p (1 + 0) + c, u2 = 2pC + k2 + v* (1 + a) 

us = 2pk2 + f;v2, a4 = k2v2 

In the case when all zeroes of the function h(D) are located on the 
left half-plane of the complex variable D, the integrals (2.15), accord- 
ing to Phil1 ips [ 4 1 , are 

II+ J, = $ (2.18) 

Here 

M, = bo (u,q - ~3) + a,uzbl - uoulb2, M, = B,, (u,un - u2u3) + ~,,a,& 

N = 2n, (u,n,u, - U&32 - u12u4) (2.19) 

After substitution of ai, bi and Bi, according to (2.17) we have 
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M, = 
( 
5)’ [2pk” + 4$ika + 2pCV + Cv4 (1 + a)] + (2.20) 

+ [a0 + &)‘I (1 + 0) (2pk’ + Cv”) + r;>” (1 + 0) [2p (1 + 0) + %I 

MS= (+)‘r2pk4 + 4paCka + 2pCV + TV’ (1 + a)] + (+y (2t”,ka + Cv2) (1 + u) 

N = 4pC (1 + 0) {k4 + 2 I(2@ - v”) (1 + 0) + $1 k2 + 
+ v4 (1 + a)” + 2pCv2 (1 + a) + CT> 

As an example we will consider a plane gyropendulum, the parameters of 
which are 

IP x _=- 
H H 

= 0.02sec-1, $. = 0.01 set-1, E=n=O 

The distance from the center of the ship’s roll to the support axis 
of the gyropendulum is r = 3 m. Then according to (2.9) 

a 
- = 0.008 set, 
H 

0 = 0, C = 0,Ol set-l, k = 0.02 set-1 

The period of the gyropendulum is T = 2n/k = 314 sec. The ship’s roll 
correlation function parameters are 

p = 0.1 set-1, v = 0.8 set-1 

Dispersion of the ship’s roll angle L, = e2 = 0.03; the average mean- 

square value X/ L1 = 0.173, i.e. about 10’. 

According to (2.16) for the given data the dispersion of a and 6 will 
be as follows: 

era = 4.37 * 10-10, p=O.69.10-6 

The average mean-square value of the gyropendulum rotational angle a 
iS 

r/s= 2.09.10-6 

i.e. about 4.3 seconds of arc. The average mean-square value of the gyro- 
scope housing rotational angle B is 

)fj% 0.83.10-a 

i.e. about 3 minutes of arc. 

Thus, during ship’s roll, oscillations with considerable amplitudes 
occur about the axis of the gyroscope housing. The amplitude of 
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oscillations about the gyropendulum support axis is small, since the 

average mean-square value of the angle a is extremely small. 

This result confirms the advantage of a twin gyroscopic vertical, con- 
taining two plane gyropendulums as compared with a single-rotor gyro- 

pendulum under the conditions of ship’s roll. 

3. Intercardinal deviation of a gyrocompass. l‘he equations of 
motion for a double-rotor gyrocompass in the preseuce of ship’s roll can 

be expressed in the following form: 

A~~-HRa’+ZP~+IP(1-~)4=HUsinp-~W, 

4Y + F9 + FP = -F$$ A,f’+K&’ + tP7 = 5 W, 
(3.1) 

where 

H = 2LyCOS8, K = 2Bsine (3.2) 

Here Q is the gyrocompass rotational angle in azimuth, 6 and y the 

angles of elevation, respectively, for the North and West gyrosphere dia- 

meters above the horizontal plane, 6 the angle of precession for the 

gyroscopes with respect to the gyrosphere, 8 the inclination of the fluid 

level in the hydraulic damper with respect to the equatorial plane of the 

gyrosphere, A,, A,, A,, A,, the corresponding moments of inertia, B the 
eigen m0ment of each gyroscope, 2f the angle between the rotar axes of 
the gyroscopes, 1P the static dent of the gyrosphere, K the stiffness 

of the spring connecting the gyro housing with the gyrosphere, II the 

angular velocity of the Earth’s diurnal rotation, 4 the latitude of 
observation; vN the Northern component of ship’s velocity, W, and IV2 the 
Eastern and Western components of translational acceleration for the 

gyro suspension point and R is the radius of the Earth. 

For the case of rectilinear uniform motion of the ship in the presence 
of roll we may set 

wl==:-ro”cOS~, lI',~rO"sillcl, (3.3) 

where 8 is the roll angle, rtf the ship’s course and r distance from the 
support point of the gyroscope to the straight line passing through the 

center of the ship’ s roll and directed parallel to the longitudinal axis 
of the ship. 
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Studying only the precessional motion of the gymcompass we eliminate 

in the equations of motion (3.1) the inertia terms Ala”, A#“, A.y” and 

A&j". 'Ihen Equations (3.1) become 

s’+F(4-9’)+F(p-p*)=_F~e (3.4) 

y + 67’ + n27 = - T2f3 (Qy + n2fj”) 

where 

IPU co9 ‘p 
122 = R , 

XlP 
n2=-, &;.2 (3.5) 

UN 
&'= RUcoscp ) 

HU sincp 
p* = pip , 9’= - “;$q (3.6) 

Assuning, in accordance with (1.121, that 8 is a stationary random 

process we will define, for the generalized coordinates of the gyro- 

compass, their mathematical expectancies, which we denote as 

Xl = M [a - a’], 22 =MI@--P’l, ~~=M[k---w] (3.7) 

The value of these quantities for t + 00 we denote by x1*. 

For the coordinate y, as can be seen from the last equation of (3.41, 

the steady value of the mathematical expectancy is 

Th e quantities xl, X2, X3 satisfy the following equations: 

x,‘+Ucoscpx, = E 

x1’ - 
kZ 

x _ k2 (1 -P) x = 0 

cl coscp 2 ucoscp 3 ’ 
x3' + Fx2 + Fx, = 0 

,lj= ka 
u coscp 

T R, (0) 

(3.9) 

(3.10) 

andRC(7) denotes the cross-correlation function for the random processes 
8 W andy. 
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Ihe quantity RE(0) may be computed as follows. Ihe spectral density 
S, for the roll angle 8 and the spectral density S2 for the random pro- 
cess 8" are, according to (1.13) 

And since according to the fourth equation of (3.4) 

r eos+ 
r=-- 

-9-k r@ fj” 

g Da+tD+na 
(3.12) 

the cross-spectral density SC(o) for the ran&m processes 8" and y may be 
expressed in the form 

S,(o)= -44y!PLJ* 
(iTo _t 3)wQ 

g (-OF++ ir;o + n*)[(@~--IP)* f4pwq 
(3.13) 

Noting that 

one can transform the expression (3.10) into 

where co 

I = 2+ 
s_ 

- (n* - cB) UP + n%* - ifa9 
[ (08 - nap + Po”] [ (08 - ua)’ + 4poq 

do 

Since the subintegral function is odd 

Therefore, the expression (3.16) becomes 

Here 

g fio) -L b, (iw)” + b, (iw)* -f- b, (if.@)2 + 6, 

h (io) = a0 (io)” + a1 (iw)B + a2 (io)” $- u3 (io) + u4 

(3.15) 

(3.16) 

(3.17) 

(3.18) 
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bo = n2 - 62, b1 = n4, b, = 0, b3 = 0 (3.19) 

a,= 1, a, = 2p + C, a2 = 2pt + n2 + v2, a3 = 2pn2 + l;v2, a4 = v2nz 

For the integral (3.17), according to Phillips E 4 1 , we will have 

I, = h (- ala, + ad - a,+&1 
2a. (adQ + aPa. - alwa) 

(3.20) 

Upon substitution of ai and bi from (3.19) this expression becomes 

14 = (va + 2~t - 4~7 n* - (v* + 2pCv2 - 4p‘V) na + (9 f 2pC) gW 

4~ in4 3 2 (2~~ + I-C - 3 n2 + 9 (v” + 2pC + P)l 
- (3.21) 

‘Ihe system of homogeneous differential equations resulting from (3.9) 
for E = 0 has the characteristic equation 

D3 + FD2 + k2D + pk2F = 0 (3.22) 

For p < 1, which is always true in gyrocompasses, all roots of the 

characteristic equation (3.22) will lie on the left half-plane of the 

complex variable D and the integrals of the above-mentioned system of 

homogeneous equations will asymptotically tend to zero for t + 00. ‘lhere- 

fore, during ship’s roll, a process of sufficiently long duration, the 

quantities x1, x2, x3 will attain their steady-state values which in 

agreement with (3.9) will be as follows: 

x1* 
E 

=-Kc+ 
x2* = 0, x3* = 0 

I 
In accordance with (3.15), the expression for x1* becomes 

5,r* = al, sin 2+ 
( 
a= -~~v~L~(&--)~$) (3.24) 

where I, is defined above by the expression (3.21). 

The quantity nl * is the intercardinal deviation of the gyrocompass. It 

vanishes for cardinal courses of the ship ($ = 00, 90°, 180°, 270° ) and 

attains its largest values for intercardinal courses ($ = 45O, 135’, 225O, 

3150 1. 

As an example we will determine the intercardinal deviation for a 
gyrocompass with k = 1.24 x 10m3 set -’ which corresponds to the natural 

period in azimuth Tk = 84.4 min. The latitude 4 of the point of observa- 
tion is assumed equal to 60°, so that U cos C#J = 3.646 x lOUs -I. The set 
distance from the gyrocompass support point to the straight line passing 
through the ship’s center of roll is r = 2 m. The roll correlation function 
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parameters are p = 0.1 see-l, u = 6.8 see-‘- The dispersion of the roll 
angle is L, = 0.03, to which corresponds the average mean-square value 
of the roli angle 

Jfq-= 0.173 

i.e. about 10’. 

The intercardinal deviation of the ~rocompas~, in agreement with 
(3.241, is then determined bs the expression 

x1+ = - 0.186 I4 sin 24 

where I,, in agreement with (3.21). depends upon 
of the gyrocompass in y-direction. The values of 
where T, = 2~. /n, are given in the table. 

TABLE 

1.501 
1.505 
1.521 
1.589 
1.715 
1.921 
2.247 
2.698 
2.837 
2.491 
2.276 
1.992 
1.624 
1.169 
0.633 
0.029 

-0.615 
-1.263 
-1.615 
-2.416 
-2.860 
-3.202 
-3.436 
-3.582 
-3.648 
-3.653 

r, (C = 0.2 n) 

4.642 
2.762 
2.149 
1.899 
1.905 
2.015 
2.178 

% 
I:498 
1.344 
1.174 
0.990 
0.795 
6.591 
0.382 
0.178 

-0.033 
-0.233 
-0.422 
-0.599 
-0.759 
-0.994 
-1.031 
-1.140 
-1.233 

T,, cez 
- 

I - 

the natural frequency n 
the function I,(T,)* 

1‘ K = 0) 

-3.613 

I;*;;; 
-3: 337 
-2.749 
-2.245 
-1.565 

z;*:;; 
-0: 291 
-0.118 
-0.064 
-0.040 

-0.994.10-e 
-0.272.10-2 
-0.140.40-a 
-0.617.16-* 
-0.395.l0-8 
-0 * 274 * 10-s 
-0.201.10-* 
-0.154.W~ 
-0.122.10-” 
-0.987 * 10-‘ 
-0.816~10-’ 
-O.685.1O-4 

-1.339 
-1.371 

I-:::;; 
-1.500 
-1.420 
--1.170 
-0.944 
-0.537 
-0.272 
-0.112 
-0.061 
-0.039 

-0.953.10-8 
-O*238~1@-’ q -;.:;;.;; 

-a 
-0: 379: IO-+ 
-0.263 9 IO-’ 
-0.193.10-a 
-O.148.1O-s 
-0.117.10-8 
-O.948.1O-4 
-0.783. IO-4 
-0.658.IO * 

As can be seen from the table, the intercardinal deviation is suffi- 

ciently mnall for gyrocompasses with the period T,, in y direction com- 

paratively large, of the order of 15-20 min, as is the case for double- 

rotor gyrocompasses. Thus, in the given example, for the case when 
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T, = 20 min, and sin 2t,b= 1, the intercardinal deviation consists of ,. 
only 0.04 minutes of arc. 

The intercardinal deviation is also snall 

zero of the function I,(n), located near the 

('= 0, the function 

The relationship 

is satisfied occurs 

I, becomes zero for 

n = Y/V/l - +aivz 

among the parameters for 

in the neighborhood of the 
point n = v. Thus, for 

which the condition n = v 

in gyrocompasses with mercury ballistic vessels [5]. 
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