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The motion of gyroscopic devices under ship’s rolling conditions was
usually considered assuming the roll sinusoidal. The works of Sveshnikov
[1] showed that the rolling motion of a ship can be considered a station-
ary random process, and obtained the correlation function and spectral
density for this process. The motion of some ship devices under these
conditions was studied by Rivkin [2 ],

The present paper considers the motion of a powered gyrostabilizer,
plane gyropendulum and a gyrocompass subject to irregular ship rolling;
determines the dispersion of a stabilization angle for the powered gyro-
stabilizer; and derives an expression for intercardinal deviation of the
gyrocompass.

1. Powered gyrostabilizer in the presence of irregular ship
rolling. The equations of motion for the powered gyrostabilizer subject
to ship rolling are of the following form [31:

Aw’ — HY — Kiy = j (j— 1) I — (o — ) (1.1)

BR" + Ho' =0, Lii," + ryi; — sp =0, Loy + ryfy + co’ — iy = '
where
A= A+ 21, K =ik, ¢ = jk,®D (1.2)

Here a is the angle rotation of the gyrostabilizer frame about its
axis, B the angle of rotation of the gyroscope about the axis of its
housing, 6 the angle of rolling, A; the moment of inertia of the gyro-
stabilizer frame together with the stabilizer object and the gyroscope
about the axis of the frame, B the equatorial moment of inertia of the
gyroscope, A the angular momentum of the gyroscope, i, the current in
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the amplifier circuit; ll/rl the time constant of this circuit, i, the
amature current of the unloading motor, l.l/r2 the time constant of the
armature circuit, I the armature moment of inertia of the unloading
motor, j the gear ratio of the transmission from the shaft of the un-
loading motor to the axis of the gyrostabilizer frame (the number of
axes of the gear transmission is assumed to be odd), { the coefficient
of viscous friction at the supports of the gyrostabilizer frame and ®
the magnetic flux created by the excitation coil of the unloading motor
with independent excitation).

We shall limit ourselves to the consideration of gyrostabilizers whose
time constants ll/r1 and lz/r2 in the control circuits are so small that
their influence can be neglected.

In this case one can let I; = I, = 0 in the equations of motion (1.1)
which then will assume the fomm

" ’ H 4 4 Y ” H ’
o'+ o — ZF—GB=gV+ 0 P+ =0 (13
where & X
SK .,
=5, on=U+To, a=jG—1I (1.4)

Let D be the operator for time differentiation (D = d/dt), and intro-
ducing matrices

mego - (E0r3) oo
foy=| . . e(D) =
5 D D2 0
(1.5)
y=’| B
we shall alter the system of equations (1.3) by the matrix equation
/D)y =e (D)8 (1) (1.6)
From Equation (1.6) it follows that
F (D)e(D
y=YD)o) (YD) = _LA();;_)) (1.7)
Here F(D) is the adjoint matrix for f(D)
D2 HEpL ™
FD)=| 4 4 4 (1.8)

» n
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and A (D) is the detemminant of matrix f(D)

112
A(D):D(D3+£—D2+q2D+—Z— qz) (q“’:m;) (1.9)
Here g is the frequency of nutational oscillations of the gyrostabil-
izer.

Matrix Y(D) is the matrix transfer function for the gyrostabilizer.
In accordance with (1.7), (1.8) and (1.5) the matrix Y{D) may be ex-
pressed in the following form:

a n
| A D D

Y(D):__A(D) _ (I—:%Ds+ K_Z_Dz)

(1.10)

The angle a of the rotation of the gyrostabilizer frame and the angle
B of the rotation of the gyroscope housing, according to (1.5), (1.7)
and (1.10) shall be determmined by the following operational expressions:

a =Yy, (D)8() :A(LD)(—ZTD“ + %Ds>0(t)

p=Y21(D)e(z)=_K(1D_)<Z_gna+%02)0(t) (1.11)

As was shown in [1 ], the irregular rolling motion of a ship can be
considered a stationary random process, the correlation function of which
has the fom

R, (1) = Lye—#Itl (cos et + %sine | ) (1.12)

where L, is the dispersion of the angle of roll and p and € are character-
istic coefficients for a given ship. The corresponding spectral density
for the correlation function (1.12) 1is

4pv? 2

Sy (0) = L, (wz_\,a;;v_*_ 4pte? * vE == ¥ p? (1'13)
Deviations of the gyrostabilizer caused by the rolling of the ship can

be evaluated by the dispersion of the stabilization angle, i.e. by the

dispersion a? of the angle of rotation of the gyrostabilizer frame.
According to (1.11) and (1.13)

a? = o \ Y1, (i0) 2.8, (0) do (1.14)

—00

where in accordance with (1,11) and (1.9)
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() -+ (3

| ¥ (i) [ = (1.15)
o+ [(4) — 2o+ (02 pa ot () ot
Expression (1.14) may be transformed to
— 1 < i
of = qLydy,  Iy= 5 S T(%dw (1.16)
Here
g (iw) = by (i0)® + b, (i)® + b, (iw)* + b3 (iw)? + b, (1.17)

h(iw) = ay (in)® + a; (o)t + a; (i) + a3 (i0)? + a4 (i) + a5
and the coefficients of the polynomials (1.17) will be
a \*? n\2
bo=0, bi=—(5), b=(F), b=0, b=0
=1, a =2+ %, (12-_—2}L—:;'+92+V2
ag = (29—!» %ﬁ—)qz + %\P, g == (2;&-;—;— + 2 )qz, a5 == %q“"vz (1.18)

The integrals of the type (1.17) were evaluated by Phillips [4]. In
the present case

M
"5 = ._?.Wi— (1 .19)
vhere
My = aghy (a3a4 — ax05) + aobs (o5 — 0,1a4) (1.20)
ay ag 0 0

ag ag a1 Gy | = [ag%5? — 2640,8405 — Aolelads + Agls®ay +

Ng= — as ag as 4as 2,2 2, _ (1'21)
+ a;%a® 4 ayay%a; — a,0,0304]

0 0 as Qg
and the expression (1.16) for the dispersion of the stabilization angle
will be of the form

ar = il (1.22)
5

As an example we will consider a gyrostabilizer with the following
parameters:
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A 50 kg m secz, B= 0.04kgm secz, H= 30 kg m sec

n 100 kg m, n = 250 kg m sec, a= 5kgmse.~c2

Furthermore, as follows from (1.,9), the nutation frequency of the
gyrostabilizer is ¢ = 21.2 sec”!: the nutation period is T= 27 /q =

0.296 sec. The roll correlation function parameters are p = 0.1 sec’"l.

v = 0.8 sec”l,
Dispersion of the roll angle is Ll = 62 = 0,03; the average mean
square value of the ship roll angle is v L, = 0.173, i.e. about 10°,

From this data we find the dispersion of the stabilization angle a2 =
0.60 & 10‘6, and the average mean-square values of the stabilization
angle and of the gyroscope housing angle

Var=0777.10% 2277 VB =0.332 =~ 19°

2. Plane gyropendulum in the presence of irregular roll.
The equations of motion for a plane gyropendulum subject to irregular
roll are of the form

A"+ HB' +1Pau+ MB=ab" —n(a' —90) 2.1)
Bp" +Ef —Ho' +x8=0, a= ‘% r (2.2)

Here a is the angle of rotation of the gyropendulum about its axis,
B the angle of rotation of the gyroscope about the axis of its housing,
0 the roll angle of the ship, A and B the corresponding moments of
inertia, H the moment of momentum of the gyroscope, IP the static moment
of the pendulum, M the magnitude of the radial correcting moment, « the
stiffness of the spring comnecting the gyroscope housing with the outer
Cardan ring, E and n the coefficients of viscous friction and r the dis-
tance from the ship’s center of roll to the axis of the gyropendulum
suspension.

Limiting ourselves to the study of the precessional motion of the
gyropendulum, we eliminate in the equations of motion (2.1) the inertia
terms Aa” and BB®. Then Equations (2.1) become

’ ’ l-p I ” 14
s
— %@' + _;‘1_320 (2.3)

Let D be the operator for time differentiation (D = d/dt) and intro-
ducing the matrices
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(2.4)

L 1P . .
gD+ D

Dt Dty
X

E

/(D)= ’ y= ’ 6(D)=

B

we replace the system of equations (2.3) by the matrix equation

D)y =e(D)0(2) (2.5)
From Equation (2.5) it follows that

- - _ FD)e(D)
y=Y0)o) (YO)="F5") (2.6)
Here F(D) is the adjoint matrix for f(d)
Epyx — ( D+ _{“;)
H H
Fo)= | e @.7)
and A(D) is the deteminant of matrix f(D)
A(D) = (1 + ) D® +-CD + k? 2.8)
where
E +IPE 1P
= =EETsE. k=TE (2.9)

Matrix Y(D) is the matrix transfer function for the system. In accord-
ance with (2.6), (2.7) and (2.8) it may be expressed as

x"lD

DB
YD) 1 o +(+H.
%D“—I—TD“

=aD (2.10)

The angle of rotation a of the gyropendulum and the angle of rotation
B of the gyroscope housing will be determined, in agreement with (2.6)
and (2.7), by the expressions

@ =Yy, (D)0(t) = A—j,))—[;‘,ﬁ,us+(c+§,—‘;)nz+ﬂb_]ea>

B=Yu (D)) =515 (F D°+ 7 D*)8 () (2.11)
The dispersion @? of the angle of rotation of the gyroscopic pendulum

and B2 of the angle of rotation of the gyroscope housing will be deter-
mined by the following expressions:

@=L {raps©d, =0 5 | Yy (i0) [2S (@) do (2.12)

Here
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Yoo =g {() o+ [+ (5 ]+ (o) o)

2 3
[Y gy (iw) [P = .IH(W“.) o' + (4) m‘] (2.13)
K=(1+o0Pot+ [P —2 (1 + o) k] ? + k¢
In expressions (2.12), S,(w) denotes the spectral density of the roll
angle 8, which according to (1.13) is of the fom

4pvi
V)3 - & il

Sl ((1)) = Ll (ma_

The expressions (2.13) may be transformed into

a? = 4uviL,I,, B = 4uviL,J, (2.14)
Here - -
1 g (iw) 1 G (iw)
I = on S R (i) h (— iw) do, Je= 2 S h (j0) k (— iw) do (2.15)
g (iw) = bo (iw)‘ + bl (i(l.))4 + b2 (lm)2 + bs
G (i) = B, (iw)® + B, (iw)* + B, (iw)? + B, (2.16)

h (iw) = aq (iw)t + a; (iw)® + a, (iw)® + ag (iw) + a4
The coefficients of polynomials (2.16) are
E\1 2 2
I

2 2
B, = —(%) , B1=(%) . B,=0, By=0 (2.17)
a,=1+o0, a,=20(1+0)+8 a=2p+k2+v3(1+0)
az = 2uk? + Cv2, ay = k%2
In the case when all zeroes of the function h(D) are located on the
left half-plane of the complex variable D, the integrals (2.15), accord-

ing to Phillips [4 ], are

=" Jo="M (2.18)

Here

M, = by (a,a4 — 22a5) + agazh; — aga,by, M, = B, (@101 — asa3) + agasB,
N = 2a,(a;a,a; — agas2 — a,%a,) (2.19)

After substitution of a b; and B;, according to (2.17) we have

1’
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M= () [kt 4 403 - 2002 G 1 - )]+ .20

+[o+ ()] +or @k + 0+ (5) (L + ) 2e (1 +0) +C)
My— (—;?)’[2“](:4 - ApEe 4 2uEh2 4+ 04 (1 + o)) + (%)’ (2uk? + Tv?) (1 + oy
N = 4 (1 + o) (k¢ + 2[(203 —v?) (1 + a) + pl]k? +
+ A (1 + 0 + 2502 (1 + o) + 2

As an example we will consider a plane gyropendulum, the parameters of
which are

IP _rx -1 M - —1 . -
.B__ﬁ._o.OZsec , _ﬁ-_0.0isec , E=n=0

The distance from the center of the ship’s roll to the support axis
of the gyropendulum is r = 3 m. Then according to (2.9)

% =0.006sec, o=0, ¢(=0,01sec™!, k=0.02sec!

The period of the gyropendulum is T = 27 /k = 314 sec. The ship’s roll
correlation function parameters are

p =0.1sec"l, v=0.8sec!
Dispersion of the ship’s roll angle L1 = 02 = 0,03; the average mean-
square value y/ L, = 0.173, i.e. about 10°.

According to (2.16) for the given data the dispersion of a and 8 will
be as follows:

a? = 4.37.10-19, B% = 0.69-10-¢

The average mean-square value of the gyropendulum rotational angle a
is

V@ = 2.09-10-5

i.e. about 4.3 seconds of arc. The average mean-square value of the gyro-
scope housing rotational angle 8 is

VB = 0.83.10-3
i.e. about 3 minutes of arc.

Thus, during ship’s roll, oscillations with considerable amplitudes
occur about the axis of the gyroscope housing. The amplitude of
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oscillations about the gyropendulum support axis is small, since the
average mean-square value of the angle a is extremely small,

This result confirms the advantage of a twin gyroscopic vertical, con-
taining two plane gyropendulums as compared with a single-rotor gyro-
pendulum under the conditions of ship’s roll.

3. Intercardinal deviation of a gyrocompass. The equations of
motion for a double-rotor gyrocompass in the presence of ship’s roll can
be expressed in the following form:

Aje” + HF' 4- HU cospa = HU_I;V + I_;)-Wﬂ

Ap” — Ha' + IPB + 1P (1—p) & = HU sin@_%wg

- P 3.1)
¥+ F+ FR= ——F—g!, A"+ K8 + 1Py = ra W,
Ad" + md — Ky’ 4 x8 = KU cos ¢
vhere
H = 2B cose, K - 2Bsine (3.2)

Here a is the gyrocompass rotational angle in azimuth, 8 and y the
angles of elevation, respectively, for the North and West gyrosphere dia-
meters above the horizontal plane, 8 the angle of precession for the
gyroscopes with respect to the gyrosphere, ¥ the inclination of the fluid
level in the hydraulic damper with respect to the equatorial plane of the
gyrosphere, A, 4,, A;, A,, the corresponding moments of inertia, B the
eigen moment of each gyroscope, 2¢ the angle between the rotor axes of
the gyroscopes, IP the static moment of the gyrosphere, x the stiffness
of the spring connecting the gyro housing with the gyrosphere, U the
angular velocity of the Earth’s diurnal rotation, ¢ the latitude of
observation; vy the Northern component of ship's velocity, ¥, and W, the
Eastern and Western components of translational acceleratlon for the
gyro suspension point and R is the radius of the Earth.

For the case of rectilinear uniform motion of the ship in the presence
of roll we may set

Wi~ —rl"cosq, Wy=rl"sind (3.3)

where 6 1s the roll angle, ¢/ the ship’s course and r distance from the
support point of the gyroscope to the straight line passing through the

center of the ship’s roll and directed parallel to the longitudinal axis
of the ship.
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Studying only the precessional motion of the gyrocompass we eliminate
in the equations of motion (3.1) the inertia terms A;a", A4,8", Ajy" and
A5". Then Equations (3.1) become

ﬁ’—l—(]coscp(a—-—a'):—[]—clc;?—%ﬂw
. R kz_(i_—_P) 8 k2 rsin¢ g,
« U cos ¢ (B—8)— Ucosg (® 3)#_Ucosq> g b
¥AFO—¥)+FE—p) = —F 2ty (3.4)

T+ = -T2 CZW (C8" + n?6")

where
IPU cos o wlP m
e ldidtat § 2 __ 0 — L
k% = VL nt= g, C—un (3.9)
- VN + HUsing . _ HU sing
* = FRU cosg ’ B = plP 7’ ¥ =— plP (3.6)

Assuning, in accordance with (1.12), that @ is a stationary random
process we will define, for the generalized coordinates of the gyro-
compass, their mathematical expectancies, which we denote as

H=Mla—a), z=M[PB—p], T5=M[%—9] (3.7)

The value of these quantities for t - « we denote by x;*.

For the coordinate y, as can be seen from the last equation of (3.4),
the steady value of the mathematical expectancy is

28 =0 (3-8)
The quantities x;, x,, x; satisfy the following equations:
2, +Ucosga =FE

PR k(1 —p)
t Ucose 27 "Ucose

.’1:3: N $31+Fx2+Fx3=0 (3.9)

where K3

E =

rsin ¢
Feosg —g Be(0) (3.10)

and R_(r) denotes the cross-correlation function for the random processes

67 and y.
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The quantity R_(0) may be computed as follows. The spectral density
S, for the roll angle ¢ and the spectral density S, for the random pro-
cess 87 are, according to (1.13)

4L, & pviLyot
851(0) = o S0 = Gt T

(3.11)

And since according to the fourth equation of (3.4)

_ reosy {D -} n® . = 8
=" wrora?  (P=w) (3.12)

the cross-spectral density S (o) for the random processes 6% and y may be
expressed in the fom

rcos ¢ (i{o + n?) wt
Se(@) = — b =~ T Rer M T A (519
Noting that .
1 .
R.() = o S S () 697 dw (3.14)
—C0

one can transform the expression (3.10) into

E = il e DR (3.45)
where "
1 — (W — ) 0® -+ ntot — ifo7
I'= 2n % [(0® — n%)® T (30?] [(0® — ¥2)8 +- 4pial] do (3.16)

—00

Since the subintegral function is odd

=]

0)?
S [ — % + Gl [ — i L] %0 =0

—00

Therefore, the expression (3.16) becomes

_ 1 T g (io)
I=li=5 | by do (3.47)
Here
8 (iw) = b (iw)® + by (iw)* + by ({w)* -+ by (3.18)

h (i) = ay (i0)* + a; (iw)® + a5 (i0)? + a; (io) + a4
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bo=nt—L% b —nt, by—0, by=0 (3.19)
a=1, a=2u+C a=2u0+4n>+? ag=2un?+ 02  a, =02
For the integral (3.17), according to Phillips [4 ], we will have

14 — by (— @104 + aza3) — aya3by (320)

2ay (agas® 4~ ay®ay — ayasa3)

Upon substitution of a; and b, from (3.19) this expression becomes

I, — 2 2L —4p) nt — (v 4 2u0v2 — 4p3C2) 0% - (V2 + 2u0) L2 3.91
4= G [ F 2 (GpR F pT — I W v (7 T 258 O] (3.21)

The system of homogeneous differential equations resulting from (3.9)
for E = 0 has the characteristic equation

D - FD? + k2D + ph?F = 0 (3.22)

For p < 1, which is always true in gyrocompasses, all roots of the
characteristic equation (3.22) will lie on the left half-plane of the
complex variable D and the integrals of the above-mentioned system of
homogeneous equations will asymptotically tend to zero for t » . There-
fore, during ship’s roll, a process of sufficiently long duration, the
quantities x,, %y, % will attain their steady-state values which in
agreement with (3.9) will be as follows:

B =, 27 =0, 2 =0 (3.23)
Ucose ’ 2 ’ 8 )
x
In accordance with (3.15), the expression for x,* becomes

1" = al,sin 20 (a — 2 LI(U%;Y ;_:) (3.24)

where I, is defined above by the expression (3.21).

The quantity x,;* is the intercardinal deviation of the gyrocompass. It
vanishes for cardinal courses of the ship (¥ = 0°, 90°, 180°, 270° ) and
attains its largest values for intercardinal courses (i = 45°, 135°, 225°,

315° ).

As an example we will determine the intercardinal deviation for a
gyrocompass with k = 1,24 x 1073 sec'1 which corresponds to the natural
period in azimuth T, = 84.4 min. The latitude ¢ of the point of observa-
tion is assumed equal to 60°, so that U cos gb: 3.646 x 10'"S sec"l. The
distance from the gyrocompass support point to the straight line passing

through the ship’s center of roll is r = 2m. The roll correlation function



parameters are g = 0.1 sec

The motion of gyroscopic devices

1

, v = 0.8 sec”

1
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. The dispersion of the roll

angle is L1 = 0.03, to which corresponds the average mean-square value
of the roll sangle

i.e. about 10°,

The intercardinal deviation of the gyrocompass,
is then determined by the expression

(3. 24)’

:tl’ =

VI =0.473

—0.186 I, sin 2¢

in agreement with

where 14, in agreement with (3.21), depends upon the natural frequency n

of the gyrocompass in y-direction. The values of the function I (T)),

where Tn = 2mw /n, are given in the table.
TABLE

T'n’ T ,cex : : .
wr | LE=0 |Lg=02m 1 wer | ne=o L €=02n)
0.2 1.501 4.642 8.7 —3.613 —1.509
0.5 1.505 2.762 8.8 —3.540 —1.311
1.0 1.524 2.149 8.9 —3.445 —1.419
2.0 1.589 1.899 9.0 —3.337 —1.455
3.0 1.715 1.905 6.5 —2.749 —1.500
4.0 1.921 2.015 10 —2.245 —1.420
5.0 2.247 2.178 11 —1.565 —1.470
6.0 2.698 2.455 12 —1.160 —0.944
6.6 2.837 1.953 15 —0.599 —0.537
7.0 2.491 1.498 20 —0.291 —0.272
7.1 2.278 1.344 30 —0.1418 —0.112
7.2 1.992 1.174 40 —0.064 —0.061
7.3 1.524 0.990 50 —0.040 —0.039
7.4 1.169 0.795 100 —0.994-10"% | —0.953.10"*
7.5 0.633 0.591 200 —0.272.10~% | —0.238-10"2
7.8 0.029 0.382 300 —0.110-10-% | —0.105-10"2
7.7 —0.615 0.178 400 —0.617.10-* | —0.592.10-8
7.8 —1.263 —0.033 500 —0.395-10~3 —0.379-10-8
7.9 —1.875 —0.233 600 —0.274-10"% | —0.263.10"8
8.0 —2.416 —0.422 700 —0.201-10% | —0.193.10"3
8.1 —2.860 —0.599 800 —0.154.10~% | —0.148-10"3
8.2 —3.202 —0.759 900 —0.422.10-% —0.117-10-2
8.3 —3.438 —0.904 1000 —0.987-10¢ —0.948.10¢
8.4 —3.582 —1.031 1100 —0.816-10-%* | —0.783.10"*
8.5 —3.648 —1.140 1200 —0.685.10~%* | —0.658-10 ¢
8.6 —3.653 —1.233

As can be seen from the table, the intercardinal deviation is suffi-
ciently small for gyrocompasses with the period T, in y direction com-
paratively large, of the order of 15-20 min, as is the case for double-

rotor gyrocompasses. Thus, in the given example, for the case when
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T, = 20 min, and sin 2¢= 1, the intercardinal deviation consists of
only 0.04 minutes of arc.

The intercardinal deviation is also small in the neighborhood of the
zero of the function I,(n), located near the point n = v. Thus, for
{ = 0, the function I, becomes zero for

n=y/}y1—4p3pt

The relationship among the parameters for which the condition n = v
is satisfied occurs in gyrocompasses with mercury ballistic vessels [5].
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